Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Cancer Discov ; 5(1): 34-55, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-37767768

RESUMO

Multiple myeloma (MM) is a malignancy that is often driven by MYC and that is sustained by IRF4, which are upregulated by super-enhancers. IKZF1 and IKZF3 bind to super-enhancers and can be degraded using immunomodulatory imide drugs (IMiD). Successful IMiD responses downregulate MYC and IRF4; however, this fails in IMiD-resistant cells. MYC and IRF4 downregulation can also be achieved in IMiD-resistant tumors using inhibitors of BET and EP300 transcriptional coactivator proteins; however, in vivo these drugs have a narrow therapeutic window. By combining IMiDs with EP300 inhibition, we demonstrate greater downregulation of MYC and IRF4, synergistic killing of myeloma in vitro and in vivo, and an increased therapeutic window. Interestingly, this potent combination failed where MYC and IRF4 expression was maintained by high levels of the AP-1 factor BATF. Our results identify an effective drug combination and a previously unrecognized mechanism of IMiD resistance. SIGNIFICANCE: These results highlight the dependence of MM on IKZF1-bound super-enhancers, which can be effectively targeted by a potent therapeutic combination pairing IMiD-mediated degradation of IKZF1 and IKZF3 with EP300 inhibition. They also identify AP-1 factors as an unrecognized mechanism of IMiD resistance in MM. See related article by Neri, Barwick, et al., p. 56. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Fator de Transcrição AP-1/uso terapêutico , Combinação de Medicamentos , Agentes de Imunomodulação
2.
Blood Cancer Discov ; 2(4): 354-369, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34258584

RESUMO

BCMA-CD3-targeting bispecific antibodies (BsAb) are a recently developed immunotherapy class which shows potent tumor killing activity in multiple myeloma (MM). Here, we investigated a murine BCMA-CD3-targeting BsAb in the immunocompetent Vk*MYC and its IMiD-sensitive derivative Vk*MYChCRBN models of MM. The BCMA-CD3 BsAb was safe and efficacious in a subset of mice, but failed in those with high-tumor burden, consistent with clinical reports of BsAb in leukemia. The combination of BCMA-CD3 BsAb with pomalidomide expanded lytic T cells and improved activity even in IMiD resistant high-tumor burden cases. Yet, survival was only marginally extended due to acute toxicity and T cell exhaustion, which impaired T cell persistence. In contrast, the combination with cyclophosphamide was safe and allowed for a tempered pro-inflammatory response associated with long-lasting complete remission. Concurrent cytotoxic therapy with BsAb actually improved T cell persistence and function, offering a promising approach to patients with a large tumor burden.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Animais , Anticorpos Biespecíficos/farmacologia , Humanos , Imunoterapia , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Linfócitos T , Carga Tumoral
3.
Blood Cancer Discov ; 1(1): 68-81, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32954360

RESUMO

The most common genetic abnormality in multiple myeloma (MM) is the deletion of chromosome 13, seen in almost half of newly diagnosed patients. Unlike chronic lymphocytic leukemia, where a recurrent minimally deleted region including MIR15A/MIR16-1 has been mapped, the deletions in MM predominantly involve the entire chromosome and no specific driver gene has been identified. Additional candidate loci include RB1 and DIS3, but while biallelic deletion of RB1 is associated with disease progression, DIS3 is a common essential gene and complete inactivation is not observed. The Vk*MYC transgenic mouse model of MM spontaneously acquires del(14), syntenic to human chromosome 13, and Rb1 complete inactivation, but not Dis3 mutations. Taking advantage of this model, we explored the role in MM initiation and progression of two candidate loci on chromosome 13: RB1 and MIR15A/MIR16-1. Monoallelic deletion of Mir15a/Mir16-1 but not Rb1 was sufficient to accelerate the development of monoclonal gammopathy in wildtype mice, and the progression of MM in Vk*MYC mice, resulting in increased expression of Mir15a/Mir16-1 target genes and plasma cell proliferation, which was similarly observed in patients with MM.


Assuntos
Leucemia Linfocítica Crônica de Células B , MicroRNAs , Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Animais , Proliferação de Células/genética , Progressão da Doença , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , MicroRNAs/genética , Gamopatia Monoclonal de Significância Indeterminada/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia
4.
Nat Commun ; 9(1): 4832, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510245

RESUMO

The gut microbiota has been causally linked to cancer, yet how intestinal microbes influence progression of extramucosal tumors is poorly understood. Here we provide evidence implying that Prevotella heparinolytica promotes the differentiation of Th17 cells colonizing the gut and migrating to the bone marrow (BM) of transgenic Vk*MYC mice, where they favor progression of multiple myeloma (MM). Lack of IL-17 in Vk*MYC mice, or disturbance of their microbiome delayed MM appearance. Similarly, in smoldering MM patients, higher levels of BM IL-17 predicted faster disease progression. IL-17 induced STAT3 phosphorylation in murine plasma cells, and activated eosinophils. Treatment of Vk*MYC mice with antibodies blocking IL-17, IL-17RA, and IL-5 reduced BM accumulation of Th17 cells and eosinophils and delayed disease progression. Thus, in Vk*MYC mice, commensal bacteria appear to unleash a paracrine signaling network between adaptive and innate immunity that accelerates progression to MM, and can be targeted by already available therapies.


Assuntos
Eosinófilos/imunologia , Microbioma Gastrointestinal/imunologia , Interleucina-17/imunologia , Mieloma Múltiplo/imunologia , Células Th17/imunologia , Animais , Medula Óssea/imunologia , Medula Óssea/metabolismo , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Progressão da Doença , Eosinófilos/metabolismo , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Prevotella/imunologia , Células Th17/metabolismo
5.
Nat Med ; 22(12): 1411-1420, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27841872

RESUMO

The cellular inhibitors of apoptosis (cIAP) 1 and 2 are amplified in about 3% of cancers and have been identified in multiple malignancies as being potential therapeutic targets as a result of their role in the evasion of apoptosis. Consequently, small-molecule IAP antagonists, such as LCL161, have entered clinical trials for their ability to induce tumor necrosis factor (TNF)-mediated apoptosis of cancer cells. However, cIAP1 and cIAP2 are recurrently homozygously deleted in multiple myeloma (MM), resulting in constitutive activation of the noncanonical nuclear factor (NF)-κB pathway. To our surprise, we observed robust in vivo anti-myeloma activity of LCL161 in a transgenic myeloma mouse model and in patients with relapsed-refractory MM, where the addition of cyclophosphamide resulted in a median progression-free-survival of 10 months. This effect was not a result of direct induction of tumor cell death, but rather of upregulation of tumor-cell-autonomous type I interferon (IFN) signaling and a strong inflammatory response that resulted in the activation of macrophages and dendritic cells, leading to phagocytosis of tumor cells. Treatment of a MM mouse model with LCL161 established long-term anti-tumor protection and induced regression in a fraction of the mice. Notably, combination of LCL161 with the immune-checkpoint inhibitor anti-PD1 was curative in all of the treated mice.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Tiazóis/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ciclofosfamida/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Interferon Tipo I/efeitos dos fármacos , Interferon Tipo I/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mieloma Múltiplo/imunologia , Recidiva Local de Neoplasia/imunologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Tiazóis/farmacologia
6.
Blood ; 120(5): 1067-76, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22498740

RESUMO

Emerging evidence indicates that tumors can follow several evolutionary paths over a patient's disease course. With the use of serial genomic analysis of samples collected at different points during the disease course of 28 patients with multiple myeloma, we found that the genomes of standard-risk patients show few changes over time, whereas those of cytogenetically high-risk patients show significantly more changes over time. The results indicate the existence of 3 temporal tumor types, which can either be genetically stable, linearly evolving, or heterogeneous clonal mixtures with shifting predominant clones. A detailed analysis of one high-risk patient sampled at 7 time points over the entire disease course identified 2 competing subclones that alternate in a back and forth manner for dominance with therapy until one clone underwent a dramatic linear evolution. With the use of the Vk*MYC genetically engineered mouse model of myeloma we modeled this competition between subclones for predominance occurring spontaneously and with therapeutic selection.


Assuntos
Evolução Clonal/genética , Variações do Número de Cópias de DNA , Genes Dominantes/fisiologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Animais , Células Cultivadas , Evolução Clonal/imunologia , Evolução Clonal/fisiologia , Análise por Conglomerados , Variações do Número de Cópias de DNA/genética , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise em Microsséries , Modelos Biológicos , Mieloma Múltiplo/imunologia , Recidiva
7.
Blood ; 120(2): 376-85, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22451422

RESUMO

The attrition rate for anticancer drugs entering clinical trials is unacceptably high. For multiple myeloma (MM), we postulate that this is because of preclinical models that overemphasize the antiproliferative activity of drugs, and clinical trials performed in refractory end-stage patients. We validate the Vk*MYC transgenic mouse as a faithful model to predict single-agent drug activity in MM with a positive predictive value of 67% (4 of 6) for clinical activity, and a negative predictive value of 86% (6 of 7) for clinical inactivity. We identify 4 novel agents that should be prioritized for evaluation in clinical trials. Transplantation of Vk*MYC tumor cells into congenic mice selected for a more aggressive disease that models end-stage drug-resistant MM and responds only to combinations of drugs with single-agent activity in untreated Vk*MYC MM. We predict that combinations of standard agents, histone deacetylase inhibitors, bromodomain inhibitors, and hypoxia-activated prodrugs will demonstrate efficacy in the treatment of relapsed MM.


Assuntos
Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Ácidos Borônicos/administração & dosagem , Ácidos Borônicos/farmacologia , Bortezomib , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Genes myc , Humanos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mieloma Múltiplo/sangue , Mieloma Múltiplo/patologia , Proteínas do Mieloma/metabolismo , Transplante de Neoplasias , Valor Preditivo dos Testes , Pirazinas/administração & dosagem , Pirazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...